Respuesta :

5naka

multiply with conjugate

[tex] \frac{1}{6 + 5i} \times \frac{6 - 5i}{6 - 5i} = \frac{6 - 5i}{36 + 25} \\ = \frac{6}{61} - \frac{5}{61} i[/tex]

Answer:

The required form is [tex]\frac{6}{61}-\frac{5i}{61}[/tex] or [tex]\frac{6}{61}+\frac{-5i}{61}[/tex]

Step-by-step explanation:

Consider the provided complex number.

[tex]\frac{1}{(6+5i)}[/tex]

Multiply the denominator and numerator with the conjugate of the denominator.

[tex]\frac{1}{(6+5i)}\times \frac{6-5i}{6-5i}[/tex]

[tex]\frac{6-5i}{(6)^2-(5i)^2}[/tex]

[tex]\frac{6-5i}{36+25}[/tex]

[tex]\frac{6-5i}{61}[/tex]

[tex]\frac{6}{61}-\frac{5i}{61}[/tex] or [tex]\frac{6}{61}+\frac{-5i}{61}[/tex]

Hence, the required form is [tex]\frac{6}{61}-\frac{5i}{61}[/tex] or [tex]\frac{6}{61}+\frac{-5i}{61}[/tex]