Respuesta :

ANSWER

B.

[tex]{f}^{ - 1} (x) = {x}^{2} - 3[/tex]

EXPLANATION

Given

[tex]f(x) = \sqrt{x + 3} [/tex]

Let

[tex]y= \sqrt{x + 3} [/tex]

Interchange x and y.

[tex]x= \sqrt{y + 3} [/tex]

Square both sides

[tex] {x}^{2} = y + 3[/tex]

Solve for y

[tex]y = {x}^{2} - 3[/tex]

Therefore the inverse of f(x) is

[tex] {f}^{ - 1} (x) = {x}^{2} - 3[/tex]