Respuesta :
Let [tex]x[/tex] be the amount (in mL) of the first brand (7% vinegar) and [tex]y[/tex] the amount of the second brand (15% vinegar). She wants to end up with a mixture with volume 240 mL, so that
[tex]x+y=240[/tex]
and she wants it contain 13% vinegar. Each mL of the first brand contributes 0.07 mL (i.e. 7% of 1 mL) vinegar, while each mL of the second brand contributes 0.15 mL (i.e. 15% of 1 mL). The final mixture needs to contribute 0.13 mL (i.e. 13% of 1 mL) for each mL of dressing, so that
[tex]0.07x+0.15y=0.13(x+y)=31.2[/tex]
Now solve:
[tex]x+y=240\implies y=240-x[/tex]
[tex]0.07x+0.15y=31.2\implies0.07x+0.15(240-x)=31.2[/tex]
[tex]\implies-0.08x+36=31.2[/tex]
[tex]\implies4.8=0.08x[/tex]
[tex]\implies\boxed{x=60}[/tex]
[tex]y=240-x\implies\boxed{y=180}[/tex]
The chef needs to use 60 mL of the first brand and 180 mL of the second brand.
Answer:
First brand: 60 milliliters
Second brand: 180 milliliters
Step-by-step explanation:
Let's call m the amount of the first dressing mark that contains 7% vinegar
Let's call n the amount of the second dressing mark that contains 15% vinegar
The resulting mixture should have 13% vinegar and 240 milliliters.
Then we know that the total amount of mixture will be:
[tex]m + n = 240[/tex]
Then the total amount of vinegar in the mixture will be:
[tex]0.07m + 0.15n = 0.13 * 240[/tex]
[tex]0.07m + 0.15n = 31.2[/tex]
Then we have two equations and two unknowns so we solve the system of equations. Multiply the first equation by -0.15 and add it to the second equation:
[tex]-0.15m -0.15n = 240 * (- 0.15)[/tex]
[tex]-0.15m -0.15n = -36[/tex]
[tex]-0.15m -0.15n = -36[/tex]
+
[tex]0.07m + 0.15n = 31.2[/tex]
--------------------------------------
[tex]-0.08m = -4.8[/tex]
[tex]m = \frac{-4.8}{-0.08}[/tex]
[tex]m = 60\ milliliters[/tex]
We substitute the value of m into one of the two equations and solve for n.
[tex]m + n = 240[/tex]
[tex]60 + n = 240[/tex]
[tex]n = 180\ milliliters[/tex]