Respuesta :
Answer:
336
Step-by-step explanation:
Using the definition of n[tex]P_{r}[/tex] = n ! / (n- r) !
where n ! = n(n - 1)(n - 2).... × 3 × 2 × 1
8[tex]P_{3}[/tex]
= 8 ! / (8 - 3) !
= 8 ! / 5 !
= [tex]\frac{8(7)(6)(5)(4)(3)(2)(1)}{5(4)(3)(2)(1)}[/tex]
[ cancel 5(4)(3)(2)(1) on numerator/denominator
= 8 × 7 × 6 = 336
ANSWER
[tex]^8P_3 = 336[/tex]
EXPLANATION
Recall that;
[tex]^nP_r = \frac{n!}{(n - r)!} [/tex]
The given expression is:
[tex]^8P_3[/tex]
We substitute n=8 and r=3
[tex]^8P_3 =\frac{8!}{(8- 3)!} [/tex]
[tex]^8P_3 =\frac{8!}{(5)!} [/tex]
This simplifies to :
[tex]^8P_3 =\frac{8 \times 7 \times 6 \times 5!}{5!} [/tex]
We cancel out the common factors to get:
[tex]^8P_3 = 8 \times 7 \times 6[/tex]
[tex]^8P_3 = 336[/tex]