Answer:
[tex]y+1=\dfrac{1}{3}(x+2)[/tex] - point-slope form
[tex]f(x)=\dfrac{1}{3}x-\dfrac{1}{3}[/tex] - function notation
Step-by-step explanation:
The point-slope form of an equation of a line:
[tex]y-y_1=m(x-x_1)[/tex]
m - slope
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
From the graph we have the points (-2, -1) and (1, 0).
Substitute:
[tex]m=\dfrac{0-(-1)}{1-(-2)}=\dfrac{1}{3}[/tex]
[tex]y-(-1)=\dfrac{1}{3}(x-(-2))[/tex]
[tex]y+1=\dfrac{1}{3}(x+2)[/tex] - point-slope form
[tex]y+1=\dfrac{1}{3}(x+2)[/tex] use the distributive property
[tex]y+1=\dfrac{1}{3}x+\dfrac{2}{3}[/tex] subtract 1 = 3/3 from both sides
[tex]y=\dfrac{1}{3}x-\dfrac{1}{3}[/tex]