Answer: 0.8531
Step-by-step explanation:
Let x be the random variable that represents the readings on scientific thermometers .
Given : The readings on scientific thermometers are normally distributed,
Population mean : [tex]\mu=0^{\circ}\ C[/tex]
Standard deviation : [tex]\sigma=1^{\circ}\ C[/tex]
Z-score : [tex]z=\dfrac{x-\mu}{\sigma}[/tex]
Now, the z-value corresponding to -1.05 : [tex]z=\dfrac{-1.05.-0}{1}=-1.05[/tex]
P-value = [tex]P(x>-1.05)=P(z>-1.05)=1-P(z\leq-1.05)[/tex]
[tex]=1-0.1468591=0.8531409\approx0.8531\text{ (Rounded to four decimal places)}[/tex]
Hence, the probability of the reading greater than -1.05 in degrees Celsius.= 0.8531