Answer:
[tex]Q_p=18000\ J[/tex]
[tex]Q_o=8000\ J[/tex]
[tex]Q_g=72000\ J[/tex]
Explanation:
Given:
REFER THE ATTACHED IMAGE FOR THE REFERENCE
The rate of heat flow using Fourier's law of conduction is given as:
[tex]\frac{Q}{t}=k.A.\frac{dT}{dx}[/tex]
Now the amount heat flow perpendicular to the pink surface:
[tex]\frac{Q_p}{4}=200\times (0.5\times 1.5).\frac{30}{1}[/tex]
[tex]Q_p=18000\ J[/tex]
Now the amount heat flow perpendicular to the orange surface:
[tex]\frac{Q_o}{4}=200\times (0.5\times 1).\frac{30}{1.5}[/tex]
[tex]Q_o=8000\ J[/tex]
Now the amount heat flow perpendicular to the green surface:
[tex]\frac{Q_g}{4}=200\times (1.5\times 1).\frac{30}{0.5}[/tex]
[tex]Q_g=72000\ J[/tex]