The measures of three parts of triangle ABC are given in the diagram. What is AC, correct to two decimal places? A. 2.55 B. 5.01 C. 5.11 D. 6.74

Answer:
Option B. 5.01 units
Step-by-step explanation:
we know that
Applying the law of sines
[tex]\frac{c}{sin(C)}=\frac{b}{sin(B)}[/tex]
we have
[tex]c=AB=3.61\ units\\C=41.82^o\\B=67.62^o\\b=AC[/tex]
substitute the given values
[tex]\frac{3.61}{sin(41.82^o)}=\frac{AC}{sin(67.62^o)}[/tex]
[tex]AC=\frac{3.61}{sin(41.82^o)}=sin(67.62^o)[/tex]
[tex]AC=5.01\ units[/tex]
Option B. 5.01 units
this is the right answer... got it on plato :)
ur welcome ;)