Answer:
171 ft
114 ft/s
38 ft/s²
Explanation:
The function is [tex]s(t)=19t^2[/tex]
At s = 3 s
[tex]s(3)=19\times 3^2\\\Rightarrow s(3)=171\ ft[/tex]
The hammer falls 171 ft
Differentiating the function with respect to time we have
[tex]v=\dfrac{d}{dt}19t^2\\\Rightarrow v=38t[/tex]
at t = 3 s
[tex]v=38\times 3\\\Rightarrow v=114\ ft/s[/tex]
The velocity of the hammer is 114 ft/s
Differentiating with v respect to t
[tex]a=\dfrac{d}{dt}38t\\\Rightarrow a=38\ ft/s^2[/tex]
The acceleration is 38 ft/s²