Respuesta :

[tex]\bf (\stackrel{x_1}{5}~,~\stackrel{y_1}{-1})~\hspace{10em} \stackrel{slope}{m}\implies -\cfrac{4}{5} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-1)}=\stackrel{m}{-\cfrac{4}{5}}(x-\stackrel{x_1}{5})\implies y+1=-\cfrac{4}{5}(x-5)[/tex]

Answer:  [tex]y + 1 = -\frac{4}{5}(x - 5)\\[/tex]

=========================================

Work Shown:

m = -4/5 is the slope

(x1,y1) = (5,-1) is the point the line goes through

Plug those into the Point Slope form equation below. Simplify.

[tex]y - y_1 = m(x - x_1)\\\\y - (-1) = -\frac{4}{5}(x - 5)\\\\y + 1 = -\frac{4}{5}(x - 5)\\[/tex]