Set up an integral for solving dydx=x2+x when y(3)=17. y(x)= +∫ t= t= Evaluate your answer to the previous part to find y(x). y(x)= help (formulas) Solve this differential equation normally to double-check that you obtain the same solution.

Respuesta :

By the fundamental theorem of calculus, we have

[tex]\dfrac{\mathrm dy}{\mathrm dx}=x^2+x[/tex]

[tex]\implies y(x)=y(3)+\displaystyle\int_3^x(t^2+t)\,\mathrm dt[/tex]

[tex]y(x)=17+\left(\dfrac{t^3}3+\dfrac{t^2}2\right)\bigg|_3^x[/tex]

[tex]y(x)=17+\left(\dfrac{x^3}3+\dfrac{x^2}2-\dfrac{3^3}3-\dfrac{3^2}2\right)[/tex]

[tex]y(x)=\dfrac{x^3}3+\dfrac{x^2}2+\dfrac72[/tex]