Explanation:
Given that,
Initial speed of the rock, u = 30 m/s
The acceleration due to gravity at the surface of the moon is 1.62 m/s².
We need to find the time when the rock is ascending at a height of 180 m.
The rock is projected from the surface of the moon. The equation of motion in this case is given by :
[tex]h=ut-\dfrac{1}{2}gt^2\\\\180=30t-\dfrac{1}{2}\times 1.62t^2[/tex]
It is a quadratic equation, after solving whose solution is given by:
t = 7.53 s
or
t = 8 seconds
(e)If it is decending, v = -20 m/s
Now t' is the time of descending. So,
[tex]v=-u+gt\\\\t=\dfrac{v+u}{g}\\\\t=\dfrac{20+30}{1.62}\\\\t=30.86\ s[/tex]
Let h' is the height of the rock at this time. So,
[tex]h'=ut-\dfrac{1}{2}gt^2\\\\h'=30\times 30.86-\dfrac{1}{2}\times 1.62\times 30.86^2\\\\h'=154.40\ m[/tex]
or
h' = 155 m