Respuesta :

Answer:

2.7 in²

Step-by-step explanation:

Given that ∆BAC ~ is similar to ∆EDF, the ratio of the area of ∆BAC to the area of ∆EDF = the square of the ratio of their corresponding sides.

Thus, let x be the area of ∆EDF

[tex] \frac{6}{x} = (\frac{3}{2})^2 [/tex]

[tex] \frac{6}{x} = \frac{9}{4} [/tex]

Cross multiply

[tex] x*9 = 4*6 [/tex]

[tex] 9x = 24 [/tex]

[tex] \frac{9x}{9} = \frac{24}{9} [/tex]

[tex] x = 2.67 [/tex]

Area of ∆EDF = 2.7 in²