Find the perimeter of the polygon with the given vertices Round your answer to the nearest hundredth

Answer:
16.93 units
Step-by-step explanation:
Length of a segment having extreme ends [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is given by the formula,
d = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
ML = [tex]\sqrt{(4-1)^2+(0-4)^2}[/tex]
= 5 units
LP = [tex]\sqrt{(1+1)^2+(4+2)^2}[/tex]
= [tex]\sqrt{40}[/tex] ≈ 6.32 units
PN = [tex]\sqrt{(-1-2)^2+(-2-0)^2}[/tex]
= [tex]\sqrt{13}[/tex]
≈ 3.61 units
NM = [tex]\sqrt{(4-2)^2+(0)^2}[/tex]
= 2 units
Perimeter of the polygon MLPN = ML + LP + PN + NM
= 5 + 6.32 + 3.61 + 2
= 16.93 units