Respuesta :
Answer:
The distance of the bar D = 1153 km
Explanation:
The electric force is the one that takes place between electric charges.
The electric force with which two point charges are attracted or repelled at rest is directly proportional to their product, inversely proportional to the square of the distance that separates them and acts in the direction of the line that joins them.
Recall that:
Electrical force(F) = I*B*L
where;
I = the current,
B = the magnetic field strength,
L = the length of the bar
However;
From the second equation of motion,
F = Ma
Since; (F) = I*B*L
Then,
Ma = IBL,
where;
M is the mass;
a is the acceleration
Making the acceleration (a) the subject of the formula, we have
a = IBL/M
Similarly;
From the third equation of motion;
v^2= u^2+2as,
where v and u are the final velocity and the initial velocity respectively
Here u = 0
Also; let distance s = D
Then
v^2 = 2aD
where;
a = IBL/M
Making the distance D the subject of the formula, we get:
D = v^2/2a = v2*M/(2IBL)
D = 11200² × 20/(2×2300×0.86×0.55)
D = 1153047.155 m
D = 1153 km