Determine any data values that are missing from the table, assuming that the data represent a linear function.

Answer:
c. 14
Step-by-step explanation:
Let the missing y value be y2.
If the data represent a linear function, then:
[tex] \frac{6 - 2}{2 - 1} = \frac{y_2 - 6}{4 - 2} [/tex]
[tex] \frac{4}{1} = \frac{y_2 - 6}{2} [/tex]
[tex] 4 = \frac{y_2 - 6}{2} [/tex]
Multiply both sides by 2
[tex] 4 \times 2 = \frac{y_2 - 6}{2} \times 2 [/tex]
[tex] 8 = y_2 - 6 [/tex]
Add 6 to both sides
[tex] 8 + 6 = y_2 - 6 + 6 [/tex]
[tex] 14 = y_2 [/tex]
The missing value is 14