Consider the width of a rectangle is [tex]2x+4[/tex] instead of [tex]2.0+4[/tex].
Given:
Width of a rectangle = [tex]2x+4[/tex]
Length of the rectangle = [tex]6x+12[/tex]
To find:
The ratio of the width to the length.
Solution:
The ratio of the width to the length is
[tex]\text{Required Ratio}=\dfrac{\text{Width of the rectangle}}{\text{Length of the rectangle}}[/tex]
Substituting the given values in the above formula, we get
[tex]\text{Required Ratio}=\dfrac{2x+4}{6x+12}[/tex]
Taking out common factors, we get
[tex]\text{Required Ratio}=\dfrac{2(x+2)}{6(x+2)}[/tex]
[tex]\text{Required Ratio}=\dfrac{2}{6}[/tex]
[tex]\text{Required Ratio}=\dfrac{1}{3}[/tex]
[tex]\text{Required Ratio}=1:3[/tex]
Therefore, the ratio of the width to the length is 1:3.