Respuesta :

Given:

The equation is

[tex]y=\cot(x+y)[/tex]

To find:

The value of [tex]\dfrac{dy}{dx}[/tex].

Solution:

We have,

[tex]y=\cot(x+y)[/tex]

Differentiate with respect to x.

[tex]\dfrac{dy}{dx}=\dfrac{d}{dx}\cot(x+y)[/tex]

[tex]\dfrac{dy}{dx}=-\text{cosec}^2(x+y)\dfrac{d}{dx}(x+y)[/tex]

[tex]\dfrac{dy}{dx}=-\text{cosec}^2(x+y)(1+\dfrac{dy}{dx})[/tex]

[tex]\dfrac{dy}{dx}=-\text{cosec}^2(x+y)-\text{cosec}^2(x+y)\dfrac{dy}{dx}[/tex]

[tex]\dfrac{dy}{dx}+\text{cosec}^2(x+y)\dfrac{dy}{dx}=-\text{cosec}^2(x+y)[/tex]

[tex]\dfrac{dy}{dx}(1+\text{cosec}^2(x+y))=-\text{cosec}^2(x+y)[/tex]

[tex]\dfrac{dy}{dx}=-\dfrac{\text{cosec}^2(x+y)}{1+\text{cosec}^2(x+y)}[/tex]

Therefore, [tex]\dfrac{dy}{dx}=-\dfrac{\text{cosec}^2(x+y)}{1+\text{cosec}^2(x+y)}[/tex].