Answer:
The tension in string will be "3.62 N".
Explanation:
The given values are:
Length of string:
l = 3 ft
or,
= 0.9144 m
frequency,
f = 60 Hz
Weight,
= 0.096 lb
or,
= 0.0435 kgm/s²
Now,
The mass will be:
= [tex]\frac{0.0435}{9.8}[/tex]
= [tex]0.0044 \ kg[/tex]
As we know,
⇒ [tex]\lambda=\frac{2L}{n}[/tex]
On substituting the values, we get
⇒ [tex]=\frac{2\times 0.9144}{4}[/tex]
⇒ [tex]=0.4572 \ m[/tex]
or,
⇒ [tex]v=f \lambda[/tex]
⇒ [tex]=0.4572\times 60[/tex]
⇒ [tex]=27.432 \ m/s[/tex]
Now,
⇒ [tex]v=\sqrt{\frac{T}{\mu} }[/tex]
or,
⇒ [tex]T=\frac{m}{l}\times v^2[/tex]
On putting the above given values, we get
⇒ [tex]=\frac{0.0044}{0.9144}\times (27.432)^2[/tex]
⇒ [tex]=\frac{752.51\times 0.0044}{0.9144}[/tex]
⇒ [tex]=3.62 \ N[/tex]