Respuesta :

Answer:

[tex] 3^{ -x+3}[/tex]

Step-by-step explanation:

We need to simplify out the given exponential expression . The given expression to us is ,

[tex]\rm\implies \dfrac{\dfrac{1}{3}}{3^{x-4}} [/tex]

We can use the Law of Exponents to simplify the given expression . Recall that ,

[tex]\rm\implies \red{\dfrac{a^m}{a^n}= a^{m-n}}[/tex]

Note that , we can write ,

[tex]\rm\implies \dfrac{1}{3}= 3^{-1}[/tex]

Therefore our expression becomes ,

[tex]\rm\implies \dfrac{ 3^{-1}}{3^{x-4}}[/tex]

Simpify using the Law of Exponents ,

[tex]\rm\implies 3^{ -1 - ( x - 4 )}[/tex]

Open the brackets in exponent ,

[tex]\rm\implies 3^{ -1 - x +4 }[/tex]

Simplify to get final expression ,

[tex]\rm\implies \boxed{\quad \blue{ 3^{-x+3} \quad}}[/tex]