help help help it is simple one

Answer:
[tex] 3^{ -x+3}[/tex]
Step-by-step explanation:
We need to simplify out the given exponential expression . The given expression to us is ,
[tex]\rm\implies \dfrac{\dfrac{1}{3}}{3^{x-4}} [/tex]
We can use the Law of Exponents to simplify the given expression . Recall that ,
[tex]\rm\implies \red{\dfrac{a^m}{a^n}= a^{m-n}}[/tex]
Note that , we can write ,
[tex]\rm\implies \dfrac{1}{3}= 3^{-1}[/tex]
Therefore our expression becomes ,
[tex]\rm\implies \dfrac{ 3^{-1}}{3^{x-4}}[/tex]
Simpify using the Law of Exponents ,
[tex]\rm\implies 3^{ -1 - ( x - 4 )}[/tex]
Open the brackets in exponent ,
[tex]\rm\implies 3^{ -1 - x +4 }[/tex]
Simplify to get final expression ,
[tex]\rm\implies \boxed{\quad \blue{ 3^{-x+3} \quad}}[/tex]