Respuesta :

Answer:

Option (3)

Step-by-step explanation:

Given function is,

f(x) = 3x² - 2x

     = [tex]3(x^{2} -\frac{2}{3}x)[/tex]

     = [tex]3(x^{2} -\frac{2}{3}x+\frac{1}{9}-\frac{1}{9})[/tex]

     = [tex]3(x^{2}-\frac{2}{3}x+\frac{1}{9})-\frac{1}{3}[/tex]

     = [tex]3(x-\frac{1}{3})^2-\frac{1}{3}[/tex]

Vertex of the parabola → [tex](\frac{1}{3},-\frac{1}{3})[/tex]

Here, leading coefficient is positive (+3),

Therefore, parabola will open upwards.

In a parabola opening upwards function decreases from negative infinity to the x value of the vertex.

Function will decrease in the interval (-∞, [tex]\frac{1}{3}[/tex]).

Option (3) will be the answer.