Respuesta :
Using the given center and point at the circumference, the equation of the circles are:
- a) [tex](x - 5)^2 + (y - 2)^2 = 100[/tex]
- b) [tex](x + 2)^2 + (y + 5)^2 = 169[/tex]
- c) [tex](x - 5)^2 + (y + 1)^2 = 65[/tex]
What is the equation of a circle?
- The equation of a circle of radius r and center [tex](x_0,y_0)[/tex] is given by:
[tex](x - x_0)^2 + (y - y_0)^2 = r^2[/tex]
Item a:
- Center C(5,2), hence [tex]x_0 = 5, y_0 = 2[/tex].
The point at the circumference is A(11,10), hence:
[tex](x - 5)^2 + (y - 2)^2 = r^2[/tex]
[tex](11 - 5)^2 + (10 - 2)^2 = r^2[/tex]
[tex]r^2 = 100[/tex]
Hence:
[tex](x - 5)^2 + (y - 2)^2 = 100[/tex]
Item b:
- Center C(-2,-5), hence [tex]x_0 = -2, y_0 = -5[/tex].
The point at the circumference is A(3,-17), hence:
[tex](x + 2)^2 + (y + 5)^2 = r^2[/tex]
[tex](3 + 2)^2 + (-17 - 5)^2 = r^2[/tex]
[tex]r^2 = 169[/tex]
Hence:
[tex](x + 2)^2 + (y + 5)^2 = 169[/tex]
Item c:
- Center C(5,-1), hence [tex]x_0 = 5, y_0 = -1[/tex].
The point at the circumference is A(-2,-5), hence:
[tex](x - 5)^2 + (y + 1)^2 = r^2[/tex]
[tex](-2 - 5)^2 + (-5 + 1)^2 = r^2[/tex]
[tex]r^2 = 65[/tex]
Hence:
[tex](x - 5)^2 + (y + 1)^2 = 65[/tex]
You can learn more about equation of a circle at https://brainly.com/question/24307696