Respuesta :

Answer:

-4 and 4

Step-by-step explanation:

Method 1

Apply Difference of Two Squares Formula: [tex]a^2-b^2=(a+b)(a-b)[/tex]

Given  [tex]x^2-16=0[/tex]

Rewrite 16 as 4²

Therefore, [tex]a^2=x^2[/tex] and [tex]b^2=4^2[/tex]

[tex]\implies a = \sqrt{x^2}=x[/tex]

[tex]\implies b=\sqrt{4^2} =4[/tex]

[tex]\implies x^2-16^2=(x+4)(x-4)[/tex]

[tex]\implies (x+4)(x-4)=0[/tex]

[tex]\implies (x+4)=0 \implies x=-4[/tex]

[tex]\implies (x-4)=0 \implies x=4[/tex]

Method 2

Given equation:

[tex]x^2-16=0[/tex]

Add 16 to both sides:

[tex]\implies x^2-16+16=0 + 16[/tex]

[tex]\implies x^2=16[/tex]

Square root both sides:

[tex]\implies \sqrt{x^2}=\sqrt{16}[/tex]

[tex]\implies x=\pm4[/tex]

Therefore, x = -4, x = 4