contestada

100 POINTS!!! To find the distance AB across a river, a distance BC of 319 m is laid off on one side of the river. It is found that B = 104.6° and C = 14.4°. Find AB.

Respuesta :

Answer: AB = 90.7 meter

Given following:

  • BC = 319 meter
  • angle B = 104.6°
  • angle C = 14.4°

Find angle A :

⇒ 180° - (104.6° + 14.4°)

⇒ 61°

Now, use sine rule:

[tex]\sf \dfrac{AB}{BC} = \dfrac{sin(C^{\circ })}{sin(A^{\circ \:})}[/tex]

[tex]\sf \dfrac{AB}{319} = \dfrac{sin(14.4) } {sin(61)}[/tex]

[tex]\sf AB = \dfrac{319 \ sin(14.4) } {sin(61)}[/tex]

[tex]\sf AB = 90.70464953 \quad \approx \quad 90.7 \ m \ (rounded \: to \: nearest \ tenth)[/tex]

Ver imagen fieryanswererft