for a) is just the distance formula
[tex]\bf \textit{distance between 2 points}\\ \quad \\
\begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
% (a,b)
A&({{ x}}\quad ,&{{ 1}})\quad
% (c,d)
B&({{ -4}}\quad ,&{{ 1}})
\end{array}\qquad
% distance value
\begin{array}{llll}
d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}
\\\\\\
\sqrt{8} = \sqrt{({{ -4}}-{{ x}})^2 + (1-1)^2}
\end{array}[/tex]
-----------------------------------------------------------------------------------------
for b) is also the distance formula, just different coordinates and distance
[tex]\bf \textit{distance between 2 points}\\ \quad \\
\begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
% (a,b)
A&({{ -7}}\quad ,&{{ y}})\quad
% (c,d)
B&({{ -3}}\quad ,&{{ 4}})
\end{array}\ \
\begin{array}{llll}
d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}
\\\\\\
4\sqrt{2} = \sqrt{(-3-(-7))^2+(4-y)^2}
\end{array}[/tex]
--------------------------------------------------------------------------
for c) well... we know AB = BC.... we do have the coordinates for A and B
so... find the distance for AB, that is [tex]\bf \textit{distance between 2 points}\\ \quad \\
\begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
% (a,b)
A&({{ -3}}\quad ,&{{ 0}})\quad
% (c,d)
B&({{ 5}}\quad ,&{{ -2}})
\end{array}\qquad
% distance value
\begin{array}{llll}
d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}\\\\
d=\boxed{?}
\end{array}[/tex]
now.. whatever that is, is = BC, so the distance for BC is
[tex]\bf \textit{distance between 2 points}\\ \quad \\
\begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
% (a,b)
B&({{ 5}}\quad ,&{{ -2}})\quad
% (c,d)
C&({{ -13}}\quad ,&{{ y}})
\end{array}\qquad
% distance value
\begin{array}{llll}
d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}\\\\
d=BC\\\\
BC=\boxed{?}
\end{array}[/tex]
so... whatever distance you get for AB, set it equals to BC, BC will be in "y-terms" since the C point has a variable in its ordered points
so.. .solve AB = BC for "y"
------------------------------------------------------------------------------------
now d) we know M and N are equidistant to P, that simply means that P is the midpoint of the segment MN
so use the midpoint formula
[tex]\bf \textit{middle point of 2 points }\\ \quad \\
\begin{array}{lllll}
&x_1&y_1&x_2&y_2\\
% (a,b)
M&({{-2}}\quad ,&{{ 1}})\quad
% (c,d)
N&({{ x}}\quad ,&{{ 1}})
\end{array}\qquad
% coordinates of midpoint
\left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)=P
\\\\\\
[/tex]
[tex]\bf \left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)=(1,4)\implies
\begin{cases}
\cfrac{{{ x_2}} + {{ x_1}}}{2}=1\leftarrow \textit{solve for "x"}\\\\
\cfrac{{{ y_2}} + {{ y_1}}}{2}=4
\end{cases}[/tex]
now, for d), you can also just use the distance formula, find the distance for MP, then since MP = PN, find the distance for PN in x-terms and then set it to equal to MP and solve for "x"