Two chords AB and CD of a circle intersect each other at E. If AE = 4 cm, CE = 5 cm, and ED = 3 cm. Find the ratio of chord AB to chord CD?
a. 16:16
b. 32:31
c. 15:16
d. 31:32

Respuesta :

Answer:

[tex]\text{d. }31:32[/tex]

Step-by-step explanation:

[tex]\text{Solution:}[/tex]

[tex]\text{From the intersecting chords theorem, we have,}[/tex]

[tex]\text{AE}\times\text{EB}=\text{CE}\times\text{ED}[/tex]

[tex]\text{or, }4\times\text{EB}=5\times\text{3}[/tex]

[tex]\text{or, EB}=3.75\text{cm}[/tex]

[tex]\text{Now,}\\[/tex]

[tex]\text{AB = AE + EB}=4+3.75=7.75\text{cm}\\\text{CD}=\text{CE + ED}=5+3=8[/tex]

[tex]\therefore\ \text{The ratio of chord AB to chord CD}=7.75/8=31/32=31:32[/tex]

Ver imagen dashataran