How long is the arc intersected by a central angle of pi/2 radians in a circle with a radius of 4.5 cm? Round your answer to the nearest tenth. Use 3.14 for pi
0.3 cm
0.7 cm
2.9 cm
7.1 cm

Respuesta :

Central angle = π / 2

length of the arc = angle * radius = (π/2) (4.5 cm)

length of the arc = (3.14 / 2) (4.5) cm = 7.065 cm ≈ 7.1 cm


Answer: 7.1 cm

Answer:-The length of the arc intersected by a central angle [tex]\frac{\pi}{2}\text{ radians}[/tex] is 7.1 cm.


Explanation:-

Let the length of the arc intersected by a central angle be l.

Given:- Central angle[tex]\theta=\frac{\pi}{2}\text{ radians}[/tex]

Radius r=4.5 cm

We know that ,

[tex]l=\theta\ r\\\Rightarrow\ l=\frac{\pi}{2}\times4.5\\=\frac{3.14\times4.5}{2}=7.065\approx7.1\text{ cm .......[Round to the nearest tenth]}[/tex]

Thus, the length of the arc intersected by a central angle [tex]\frac{\pi}{2}\text{ radians}[/tex] is 7.1 cm.