Respuesta :

[tex]\bf n^{th}\textit{ term of a geometric sequence}\\\\ a_n=a_1\cdot r^{n-1}\qquad \begin{cases} n=n^{th}\ term\\ a_1=\textit{first term's value}\\ r=\textit{common ratio} \end{cases}\\\\ -------------------------------\\\\ a_1=3\qquad a_n=\left( \frac{1}{2} \right)a_{n-1}\impliedby \begin{array}{llll} \textit{simply means, to get the next term}\\ \textit{you multiply the previous, }a_{n-1},~by~\frac{1}{2}\\ meaning\qquad r=\frac{1}{2} \end{array} \\\\\\ a_n=3\cdot \left( \frac{1}{2} \right)^{n-1}[/tex]

Hewro!

Answer:

3 x 1/2

:)

Otras preguntas