Respuesta :

this is a 30-60-90 special right triangle, 
x=half of the hypotenuse=1/2 of 24=12
y=(√3)/2 of the hypotenuse=12√3

Answer:

[tex]x=12[/tex]

[tex]y=12\sqrt{3}[/tex]

Step-by-step explanation:

We have been given diagram of a triangle. We are asked to find the values of x and y for the given triangle.

We will use law of trigonometric ratios to find the sides of our given triangle.

[tex]\text{sin}=\frac{\text{Opposite}}{\text{Hypotenuse}}[/tex]

[tex]\text{sin}(60^{\circ})=\frac{y}{24}[/tex]

[tex]\frac{\sqrt{3}}{2}=\frac{y}{24}[/tex]

[tex]\frac{\sqrt{3}}{2}\cdot 24=\frac{y}{24}\cdot 24[/tex]

[tex]\frac{\sqrt{3}}{1}\cdot 12=y[/tex]

[tex]y=12\sqrt{3}[/tex]

Therefore, the value of y is [tex]12\sqrt{3}[/tex].

[tex]\text{cos}=\frac{\text{Adjacent}}{\text{Hypotenuse}}[/tex]

[tex]\text{cos}(60^{\circ})=\frac{x}{24}[/tex]

[tex]\frac{1}{2}=\frac{x}{24}[/tex]

[tex]\frac{1}{2}}\cdot 24=\frac{x}{24}\cdot 24[/tex]

[tex]x=12[/tex]

Therefore, the value of x is 12.